



Market study on bio-based building blocks and polymers in the world - Capacities, production and applications: status quo and trends toward 2020

&

**Environmental aspects** 

&

CO<sub>2</sub>-based polymers

Michael Carus, Florence Aeschelmann,
Roland Essel, Achim Rascka
nova-Institut GmbH, Hürth (Cologne), Germany





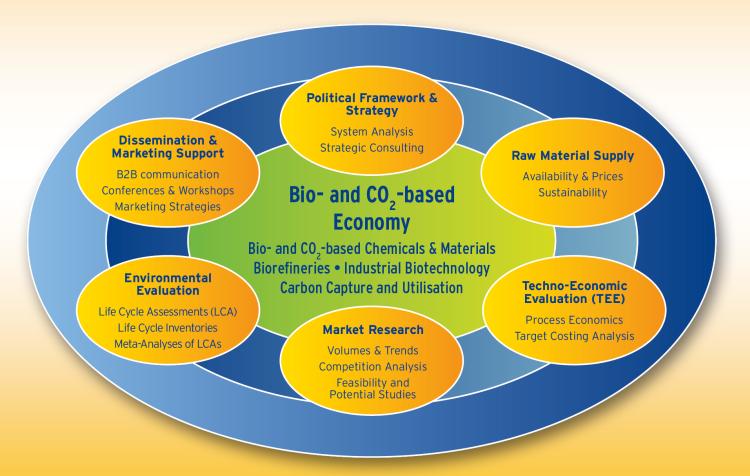
### Bio-based Economy - Bio-based Chemistry and Materials





#### nova-Institut GmbH – SME




## Founded in 1994 as a private and independent research institute 25 employees – interdisciplinary, international team

#### **Revenue shares**

Research Projects

Conferences & Dissemination

Industrial & Political Consultancy





#### Bio- and CO<sub>2</sub>-based Economy – Services of nova-Institute



#### **PUBLICATIONS**

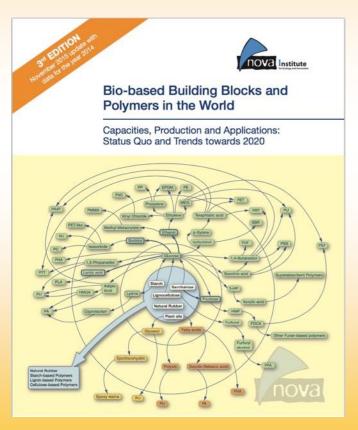
|   |                                 | р |
|---|---------------------------------|---|
|   | Markets & Economy               |   |
|   | Policy                          |   |
|   | Sustainability & Ecology        |   |
|   | Technology                      |   |
|   |                                 |   |
| D | nova-Papers                     |   |
| D | Top downloads                   |   |
| P | Proceedings of nova Conferences |   |
| D | Graphics                        |   |
| D | Old Publications                |   |

#### INFO



#### CONFERENCES

| P | 9th International Conference on Bio-based Materials ("Biowerkstoff-Kongress")      |
|---|------------------------------------------------------------------------------------|
|   | Maternushaus, Cologne, Germany, 5 - 6 April 2016                                   |
|   | Bio-based Start-up Day                                                             |
|   | Maternushaus, Cologne, Germany, 7 April 2016                                       |
|   | 13th International Conference of the European Industrial<br>Hemp Association       |
|   | RiteInforum, Wesselling, Germany, 31 May - 2 June 2016                             |
|   | 5th Conference on Carbon Dioxide as Feedstock for Fuels,<br>Chemistry and Polymers |
|   |                                                                                    |


Maternusiaus, Cologne, Germany, 6-7 December 2016



## **Market study**



"Bio-based Building blocks and Polymers in the World – Capacities, Production and Applications: Status Quo and Trends towards 2020" (nova-Institute 2015)



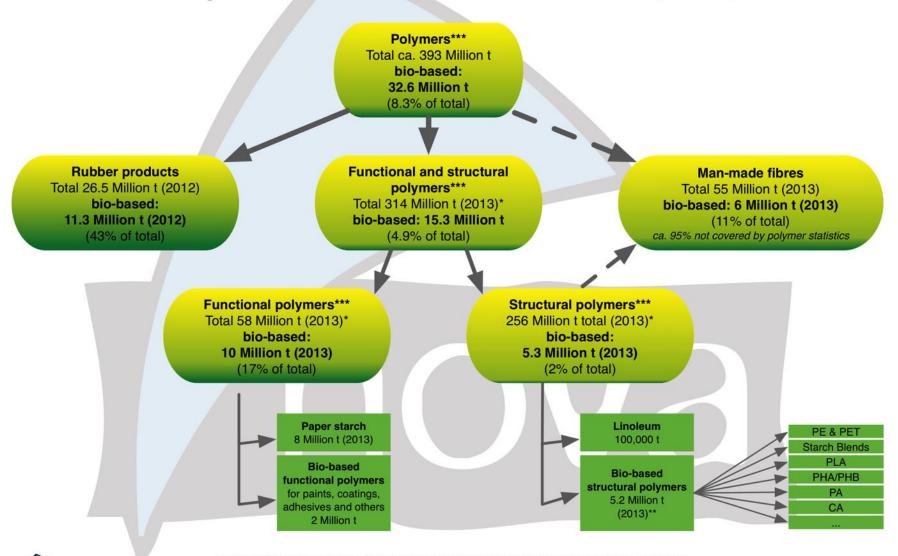
Comprehensive data and trend reports written by experts (from Europe, Asia and US), about 500 pages, published in December 2015

Price: 3,000 €

Summary can be downloaded at: <a href="https://www.bio-based.eu/markets/">www.bio-based.eu/markets/</a>

Basis of the European Bioplastics data, new graphs published on November 2015



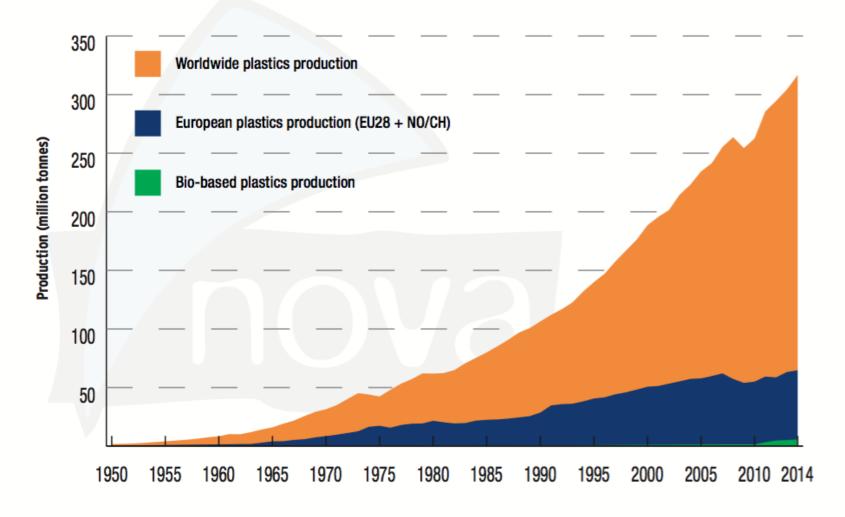

## **Trend reports**



The "trend reports" section contains a total of 10 independent articles contributed by leading experts in the fields of bio-based polymers and building blocks (only main authors shown):

- Dirk Carrez & Jim Philp: Policies impacting bio-based plastics market development
- Constance Ißbrücker & Harald Käb: Plastic Bags their consumption and regulation in the European market and beyond
- Lara Dammer: Standards, norms and labels for bio-based products
- Jan Ravenstijn: Bio-based polymers, a revolutionary change
- Rainer Busch: Bio-based monomers
- Wolfgang Baltus: Asian markets for bio-based chemical building blocks and polymers
- Harald Käb: Brand views and adoption of bio-based polymers
- Roland Essel: Environmental evaluation of bio-based polymers and plastics
- Roland Essel: Microplastics in the environment: sources, consequences, solutions
- Michael Carus: GreenPremium prices along the value chain of bio-based products

#### Polymers worldwide, bio-based shares (2013)






(\*): Data from PlasticsEurope 2014. Original data show 299 Million tonnes for 2013 in total. With the same shares as 2011 (PlasticsEurope 2012) this would mean: 251 Million tonnes structural polymers and 48 Million tonnes functional polymers plus bio-based polymers (nova 2015); (\*\*): nova-Institute 2015; (\*\*\*): Polymers covering thermoplastic and thermosets; Different additional sources, like International Rubber Study Group (www.macplas.it. 13-07-10), The Fiber Year 2014 (14-05)

Full study at www.bio-based.eu/markets

#### Worldwide, European and bio-based plastics production from 1950 to 2014



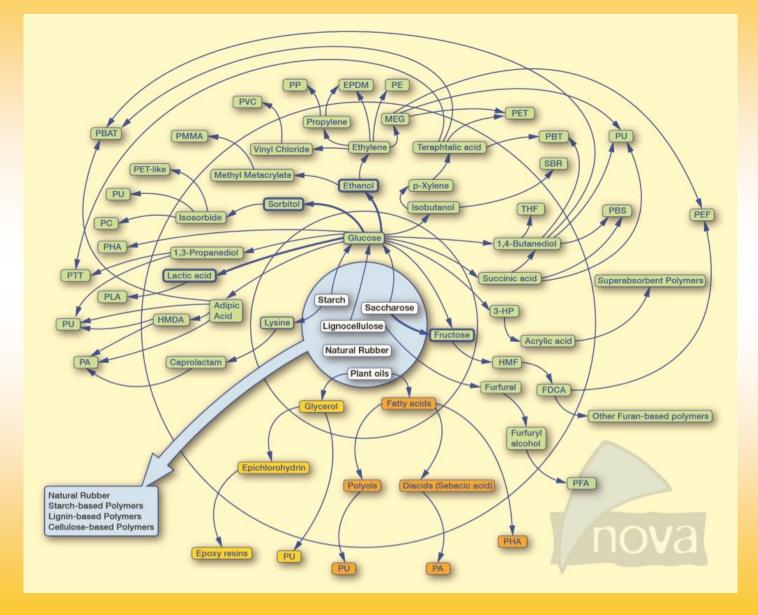




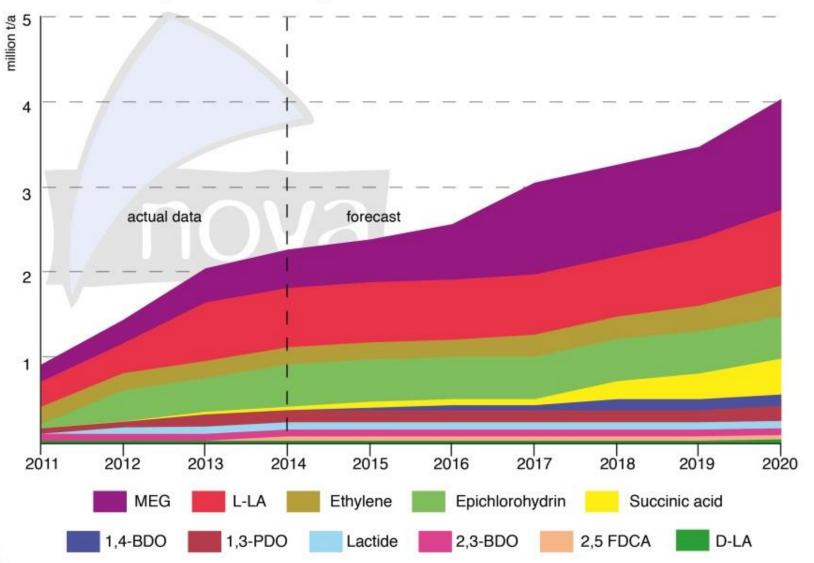
#### Scope of the nova market study



**NEW:** Bio-based polymers + bio-based building blocks


#### Which bio-based building blocks are considered?

- Monoethylene glycol (MEG)
- Lactic acid (LA)
- Ethylene
- Epichlorohydrin
- Succinic acid
- 1,4-Butanediol (1,4-BDO)
- 1,3-Propanediol (1,3-PDO)
- 2,5-Furanedicarboxylic acid (2,5-FDCA)




#### Free poster available





## Selected bio-based building blocks: Evolution of worldwide production capacities from 2011 to 2020



## **Bio-based polymer producers and production**





855,000

45,000

95.000

95.000

125,000

200,000

600,000

35.000

205.000

120,000

1,400,000

395,000

@ nova-Institut GmbH 2015

5.690.000

Full study available at www.bio-based.eu/markets

1,520,000

-2014

1% 26%

0%

12%

27%

0%

0%

0%

9%

5%

0%

17%

-1%

11%

|                               |              | capacity 2012-2014 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                         |            | ova  |
|-------------------------------|--------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------------------|------------|------|
|                               |              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2012       | 201        | 3                       | 201        | 4    |
| BIO-BASED STRUCTURAL POLYMERS | CURRENT BIO- |                    | A STATE OF THE PARTY OF THE PAR | PRODUCTION | PRODUCTION | I MARKET AND ADDRESS OF | PRODUCTION | CAGR |

2020

16

12

5

11

5

19

33

16

129

835,000

1,120,000

45,000

65,000

75,000

125,000

200,000

450,000

30,000

180,000

90,000

1,100,000

365,000

4,680,000

845,000

1,210,000

45,000

85,000

75,000

125,000

200,000

600,000

32,000

195,000

120,000

1,200,000

400,000

5,132,000

1%

8%

0%

31%

0%

0%

0%

33%

7%

8%

33%

9%

10%

10%

15

9

10

5

16

27

112

**UNTIL 2020** 

50%

30%

50% to 70%

40% to 100%

Up to 50%\*\*

Up to 100%\*\*

100%

20%

100%

100%

|                               |              |             |           |            |            |           | nova       |        |
|-------------------------------|--------------|-------------|-----------|------------|------------|-----------|------------|--------|
|                               |              |             |           | 2012       | 201        | 3         | 201        | 4      |
| BIO-BASED STRUCTURAL POLYMERS | CURRENT BIO- | PRODUCING   | LOCATIONS | PRODUCTION | PRODUCTION | CAGR      | PRODUCTION | CAGR   |
|                               | BASED CARBON | COMPANIES   | IN 2014   | CAPACITIES | CAPACITIES | 2012-2013 | CAPACITIES | 2013-2 |
|                               | CONTENT*     | IN 2014 AND | AND UNTIL | (TONNES)   | (TONNES)   |           | (TONNES)   |        |

| Polytrimethylene terephthalate | PTT | 27%         | 2  |
|--------------------------------|-----|-------------|----|
| Polyurethanes                  | PUR | 10% to 100% | 7  |
| Starch blends***               | _   | 25% to 100% | 15 |

Bio-based carbon content: fraction of carbon derived from biomass in a product

Currently still mostly fossil-based with existing drop-in solutions and a steady upward trend

(EN 16575 Bio-based products - Vocabulary)

CA

**EPDM** 

PA

**PBAT** 

**PBS** 

PE

PET

PHA

PLA

Cellulose acetate

monomer rubber

**Polyamides** 

terephthalate)

Polyethylene

Polylactic acid

Total

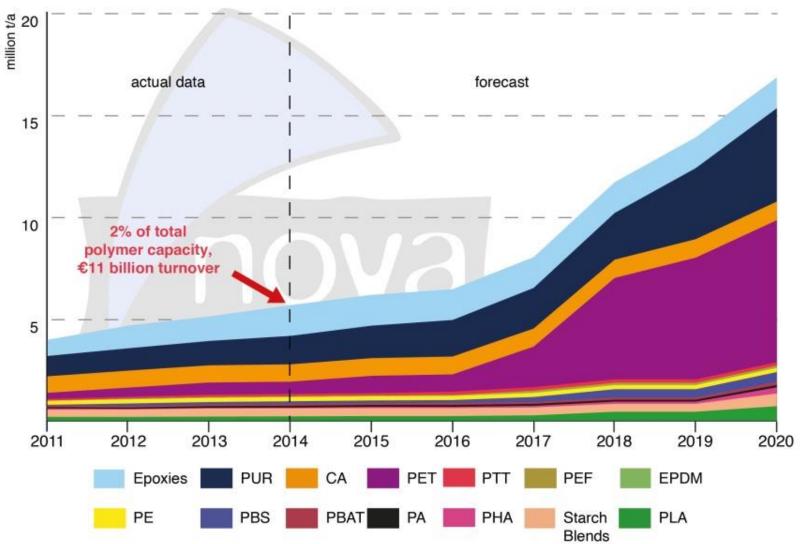
Ethylene propylene diene

Poly(butylene adipate-co-

Polybutylene succinate

Polyethylene terephtalate

\*\*\* Starch in plastic compound


Green: Growth over the previous year

Polyhydroxyalkanoates

**Epoxies** 

**CONTENT\*** IN 2014 AND

## Bio-based polymers: Evolution of worldwide production capacities from 2011 to 2020







#### **Bio-PET**



#### **Today five companies produce Bio-PET**:

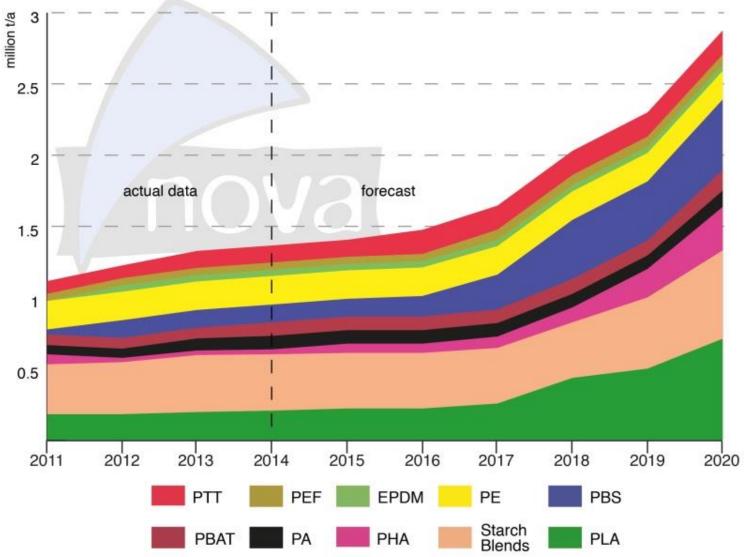
- Indorama Ventures (Indonesia), mainly for CocaCola
- Teijin Limited (Japan)
- Toray (Japan)
- Toyota Tsusho (Japan) (MEG from Greencol Taiwan)
- Polyplex (India)

#### **Bio-PET capacities:**

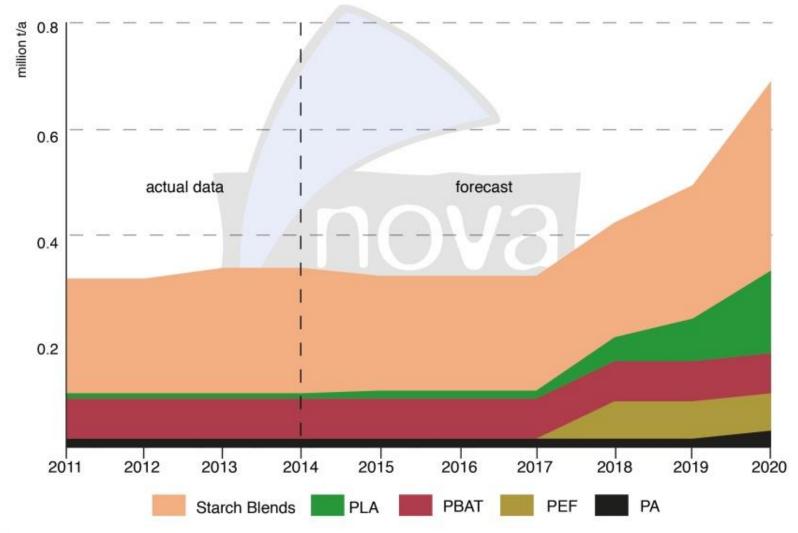
• in 2011: 300,000 tonnes

In 2013/14: 600,000 tonnes

In 2020: 7 Million tonnes

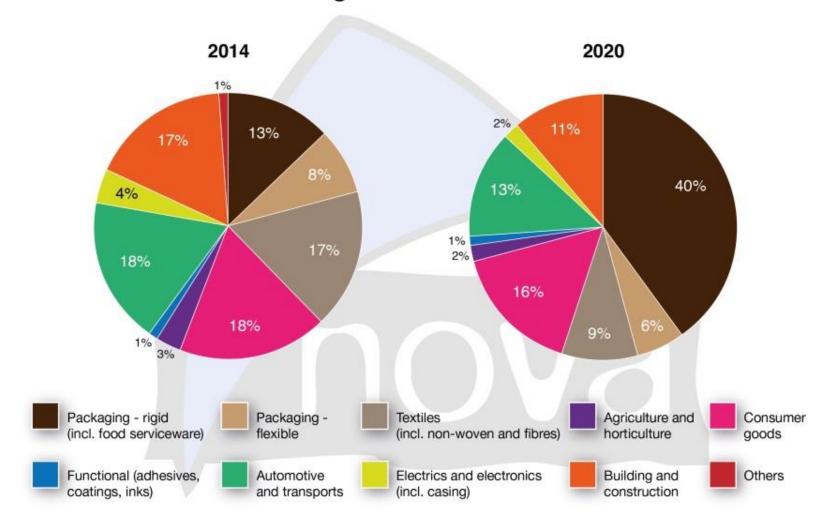

Biomass content ca. 30%

Bio-based carbon content ca. 20%


#### Price:

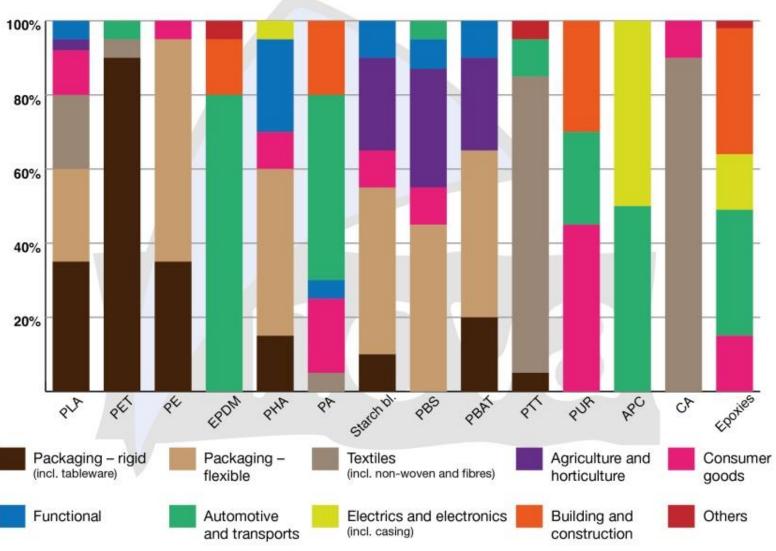
Early 2015 Bio-PET is about two times more expensive compared to petrochemical PET (because of cheap crude oil); for high volumes (CocaCola) it is only 1.25 – 1.5 times more. Price parity is expected before 2020.

## Selected bio-based polymers: Evolution of worldwide production capacities from 2011 to 2020




## Bio-based polymers: Evolution of production capacities in Europe from 2011 to 2020 (without thermosets and cellulose acetate)






## Worldwide shares of bio-based polymers production in different market segments in 2014 and 2020





#### Shares of market segments per bio-based polymer in 2014





#### Scope of the "European Bioplastics" data

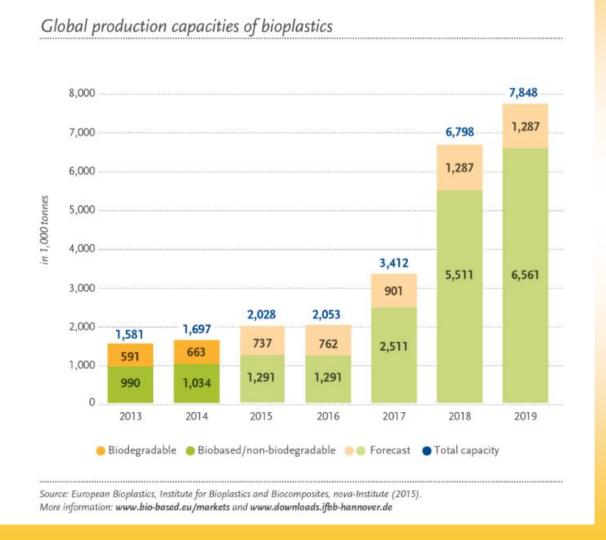


#### Which bio-based polymers are considered?

- → Only thermoplastics (biodegradable or not), no thermosets
- Polylactic acid (PLA)
- Polyhydroxyalkanoates (PHAs)
- Polyethylene (PE)
- Polyethylene Terephthalate (PET)
- Polyethylene Furanoate (PEF)
- Polybutylene Succinate (PBS)
- Polybutylene adipate-co-terephthalate (PBAT)
- Polyamide (PA)
- Polytrimethylene terephthalate (PTT)
- Aliphatic polycarbonate (APC)
- Starch blends

#### Not included:

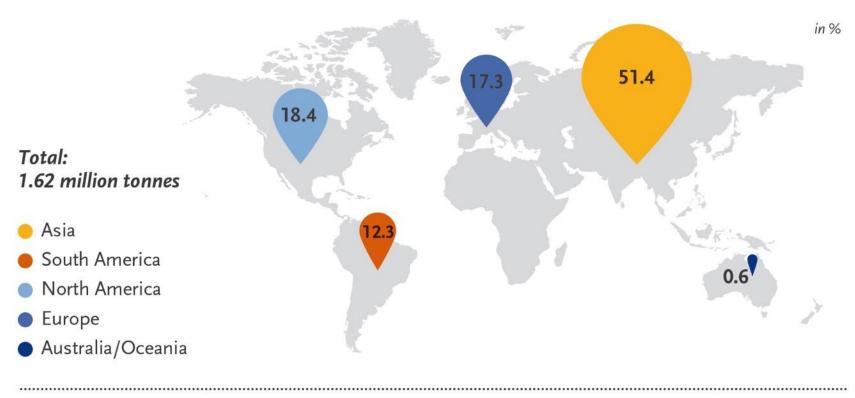
- Polyurethanes (PUR)
- Epoxies
- Ethylene Propylene Diene Monomer Rubber (EPDM)
- Cellulose acetate (CA)


Thermosets





## Production capacities grow > 350% between

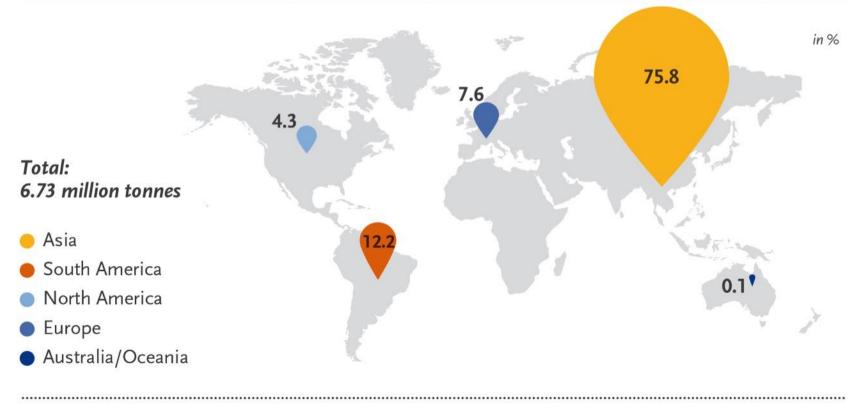

2014-2019







## Regional development of production capacities 2013




Source: European Bioplastics, Institute for Bioplastics and Biocomposites, nova-Institute (2014). More information: www.bio-based.eu/markets and www.downloads.ifbb-hannover.de





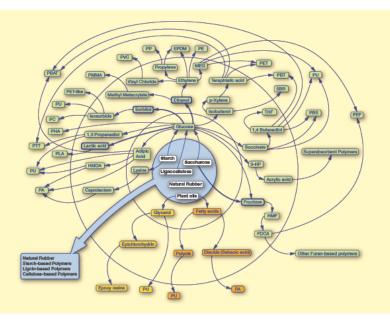
## Regional development of production capacities 2018



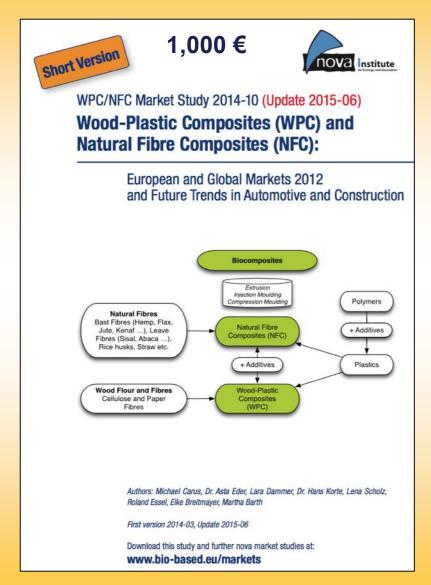
Source: European Bioplastics, Institute for Bioplastics and Biocomposites, nova-Institute (2014). More information: www.bio-based.eu/markets and www.downloads.ifbb-hannover.de



#### **Latest Market Studies**




3,000 €




Bio-based Building Blocks and Polymers in the World

Capacities, Production and Applications: Status Quo and Trends towards 2020



Florence Aeschelmann, Michael Carus, Achim Raschka, Jan Ravenstijn, Wolfgang Baltus, Harald Käb, Howard Blum, Rainer Busch, Dirk Carrez, James Philp, Constance Ißbrücker, Stefan Zepnik



Short versions can be downloaded at: <a href="https://www.bio-based.eu/markets/">www.bio-based.eu/markets/</a>

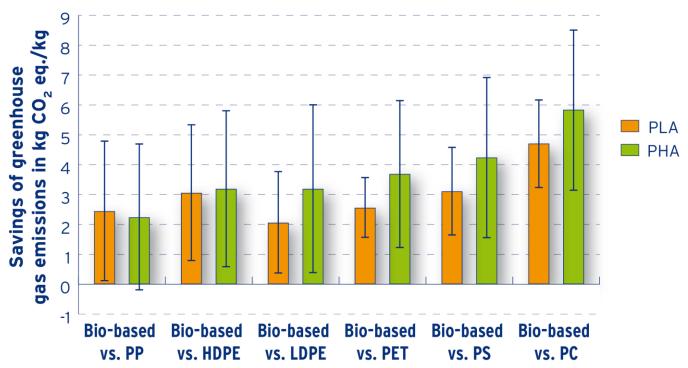
## Production of Biocomposites (WPC and NFC) in the European Union 2012 (in tonnes)



| Wood-Plastic Composites                                                           | 260,000     |
|-----------------------------------------------------------------------------------|-------------|
| Decking                                                                           | 174,000     |
| Automotive                                                                        | 60,000      |
| Siding and Fencing                                                                | 16,000      |
| Technical Applications                                                            | 5,000       |
| Furniture                                                                         | 2,500       |
| Consumer goods                                                                    | 2,500       |
| Natural Fibre Composites                                                          | 92,000      |
| Automotive                                                                        | 90,000      |
| Others                                                                            | 2,000       |
| Total Volume Biocomposites (WPC and NFC)                                          | 352,000     |
| Share                                                                             | 15%         |
| Composite Production in European Union, total volume (Glass, Carbon, WPC and NFC) | 2.4 Million |






# Bio-based polymers & Environment



### Savings of greenhouse gases

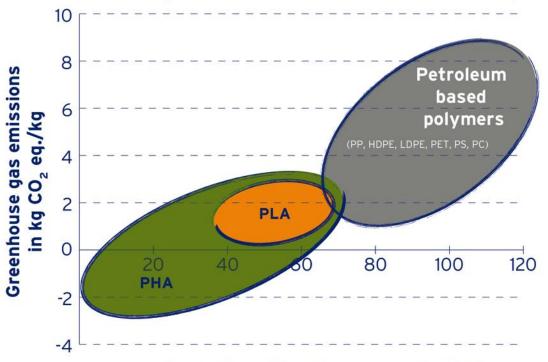


### Savings of greenhouse gas emissions due to the production of bio-based polymers



1. Bars indicate average values 2. Whiskers indicate standard deviation 3. Negative values indicate additional emissions of greenhouse gases




Petroleum based polymers: PP = Polypropylene, HDPE = High density polyethylene, LDPE = Low density polyethylene, PET = Polyethylene terepehtalate, PS = Polystyrene, PC = Polycarbonate Bio-based polymers: PLA = Polylactic acid, PHA = Polyhydroxyalkanoate



#### **LCA** results



## Environmental impacts of different polymers in two impact categories: Climate change and fossil resource depletion

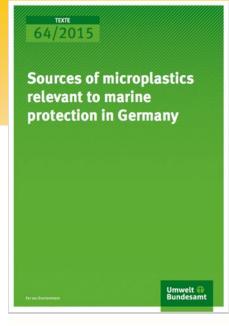


#### Depletion of fossil resources in MJ/kg



Petroleum based polymers:

Bio-based polymers:


PP = Polypropylene, HDPE = High density polyethylene, LDPE = Low density polyethylene, PET = Polyethylene terepehtalate, PS = Polystyrene, PC = Polycarbonate PHA = Polyhydroxyalkanoate, PLA = Polylactic acid



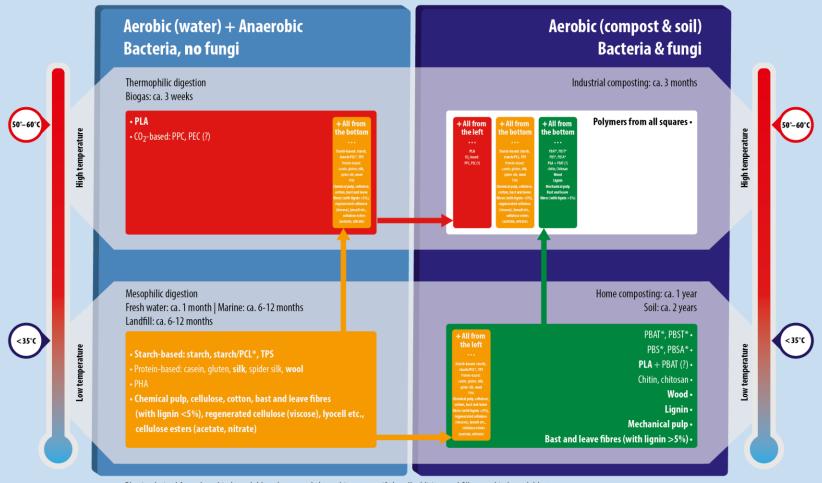

## Sources of microplastics

Table 7 Sources of primary and secondary microplastics in Germany (Source: Authors' own table) Sources of microplastics in Cermany Quantity of sources in tonnes of

| Sources of micropiastics in Germany                    | Quantity of sources in tonnes of |
|--------------------------------------------------------|----------------------------------|
|                                                        | microplastics per year           |
| Primary microplastics                                  |                                  |
| <ul> <li>cosmetic products</li> </ul>                  | 500                              |
| <ul><li>detergents, cleaning and</li></ul>             | < 100                            |
| maintenance products for                               |                                  |
| commercial and industrial use                          |                                  |
| <ul> <li>blasting abrasives for deburring</li> </ul>   | < 100                            |
| surfaces                                               |                                  |
| <ul> <li>Micronised synthetic waxes in</li> </ul>      | 100,000                          |
| technical applications                                 |                                  |
| Secondary microparticles                               |                                  |
| <ul> <li>fragmentation of plastic debris</li> </ul>    | unknown                          |
| <ul> <li>synthetic fibres from clothing and</li> </ul> | 80 to 400                        |
| other textiles                                         |                                  |
| <ul> <li>pellet loss during manufacture and</li> </ul> | 21,000 to 210,000                |
| processing of plastics                                 |                                  |
| <ul><li>tyre abrasion</li></ul>                        | 60,000 to 111,000                |



#### Biodegradable, bio-based polymers in various environments



Plastics derived from these biodegradable polymers only keep this property if also all additives and fillers are biodegradable, too.

**BOLD:** Bio-based polymers with relevant production volumes in 2014 (>10,000 t/year)

\*: PBS, PBST, PBSA and PBAT so far mainly petro-based, but in the future bio-based; PCL so far only petro-based.

?: Not finally confirmed, further testing necessary.



















## Aerobic (water) + Anaerobic Bacteria, no fungi

Mesophilic digestion

Fresh water: ca. 1 month | Marine: ca. 6-12 months

Landfill: ca. 6-12 months

- Starch-based: starch, starch/PCL\*, TPS
- Protein-based: casein, gluten, silk, spider silk, wool
- PHA
- Chemical pulp, cellulose, cotton, bast and leave fibres
   (with lignin <5%), regenerated cellulose (viscose), lyocell etc.,
   cellulose esters (acetate, nitrate)</li>

Low temperature













## Aerobic (compost & soil) Bacteria & fungi

Home composting: ca. 1 year

Soil: ca. 2 years

### + All from the left

. . .

Starch-based: starch starch/PCL\*, TPS

> Protein-based: casein, gluten, **silk**, spider silk, **wool**

Chemical pulp, cellulose cotton, bast and leave fibres (with lignin <5% regenerated cellulose (viscose), lyocell etc., cellulose esters

- PBAT\*, PBST\* •
- PBS\*, PBSA\* •
- $PLA + PBAT (?) \cdot$
- Chitin, chitosan
  - Wood •
  - Lignin •
- Mechanical pulp •
- Bast and leave fibres (with lignin >5%) •

Low temperature







## Aerobic (water) + Anaerobic Bacteria, no fungi

Thermophilic digestion Biogas: ca. 3 weeks

- PLA
- CO<sub>2</sub>-based: PPC, PEC (?)

### + All from the bottom

. . . .

Starch-based: starch, starch/PCL\*, TPS Protein-based: casein, gluten, silk, spider silk, wool PHA hemical pulp, cellulose, cotton, bast and leave bres (with lignin <5%), regenerated cellulose (viscose), lyocell etc., cellulose esters (acetate, nitrate)

High temperature











## **Aerobic (compost & soil) Bacteria & fungi**



Industrial composting: ca. 3 months

#### + All from the left

PLA CO,-based:

#### + All from the bottom

#### + All from the bottom

PBAT\*, PBST\* PLA + PBAT (?) chitin, Chitosan Wood **Bast and leave** fibres (with lignin >5%)

#### Polymers from all squares •



High temperature





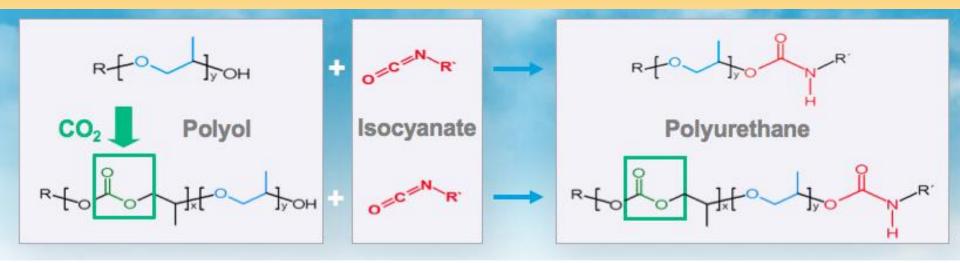
#### Basics

## Plastics made from CO<sub>2</sub>

Carbon dioxide as chemical feedstock



# Polypropylene carbonates (PPC) and Polyenthylen carbonates (PEC) via CO<sub>2</sub> and propylene oxid / ethylene oxid – and via CO<sub>2</sub>, Polyol and Isoccyanate to PUR








## **Dream Polymers: Polyurethanes**

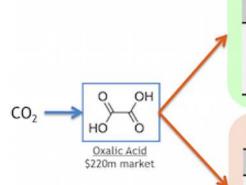




#### Next generation Polyols



CO<sub>2</sub>-based Methanol




nova-Institute – 36 –



### Oxalic acid / Bio-PET



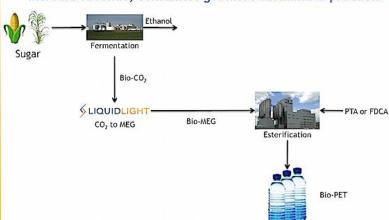


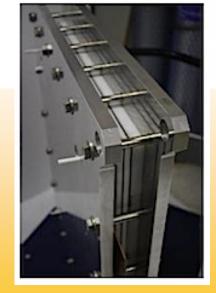
| Dasic Chemicals |              |  |  |  |
|-----------------|--------------|--|--|--|
| Product         | Market Size  |  |  |  |
| MEG             | \$27 Billion |  |  |  |
| Acetic Acid     | \$8 Billion  |  |  |  |
| Ethanol         | \$43 Billion |  |  |  |

Pacie Chamicale

#### **Specialty Chemicals**

| Product        | Market Size   |
|----------------|---------------|
| Glycolic Acid  | \$250 Million |
| Glyoxylic Acid | \$290 Million |
| C4+            | \$20 Billion  |

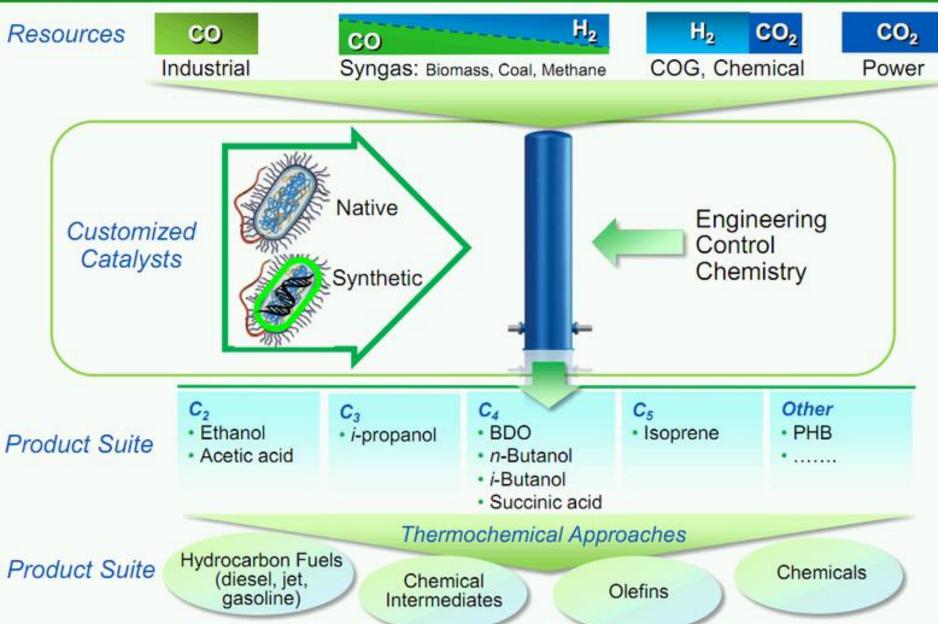

Hydrogenation with Liquid Light proprietary tech


Electrochemical hydrogenation with Liquid Light proprietary tech



Why customers care, part 2:

With LL: bio-PET less expensive to make; ethanol producers increase revenue; consumers get more sustainable products






nova-Institute – 37 –

### LanzaTech Gas to Liquid Platform











Home

Registration Service

Partner

Previous conferences Terms and Conditions Contact/Imprint

#### Venue

Maternushaus Kardinal-Frings-Str. 1-3 50668 Köln / Cologne Germany

Email: info@maternushaus.de Tel.: +49 221 / 16 31 - 0

#### 5th Conference on Carbon Dioxide as Feedstock for Fuels, Chemistry and Polymers

6 - 7 December 2016, Maternushaus, Cologne, Germany

#### Europe's largest event on Carbon Capture and Utilization (CCU) in 2016



It sounds like a daring vision but could become reality sooner than you think! In the last years

the explosion of interest in  $CO_2$  has led to a new awareness at industrial, societal and scientific levels with the result that  $CO_2$  is no longer a mere waste product, but rather an abundant, low cost raw material. Using carbon dioxide as feedstock for fuels, chemistry and polymers is a big challenge and chance for our sustainable future and has immense potential for the coming decade — much faster than expected!

Over the last few years, the rise of this topic has developed from several research projects and industrial applications to become more and more dynamic. High on the European research agenda, scientists are very active in CCU research, especially in the fields of solar fuels (power-to-fuel, power-to-gas) – but also in CO<sub>2</sub>-based chemicals and polymers. Leading players will showcase some enhanced and also new applications using carbon dioxide as feedstock. Representatives from political bodies and research institutes will be on hand at the event to present and discuss the latest national and regional policies, strategies and visions.

Our goal is to connect more than 200 participants from the leading industrial and academic players in CO<sub>2</sub> utilization that are expected to attend the conference and to share their recent success stories, as well as new ideas and products in implementation. We hope also you will be part of this opportunity to get in touch with this innovative and active network.

#### Our participants

Attending this conference will be invaluable for businessmen and academics who wish to get a full picture of how this new and exciting scenario is unfolding, as well as providing an opportunity to meet the right business or academic partners for future alliances.

#### Call for posters and papers

Would you like to contribute to the conference with your presentation on recent developments within the field's of Policy & Vision, H<sub>2</sub> Generation: Prerequisite for CO<sub>2</sub>-Economy, CO<sub>2</sub> Capture & Purification, Chemicals & Polymers and CO<sub>2</sub>-based Fuels? We appreciate your proposal! Just send an abstract and a suggested title by e-mail to Mr Achim Raschka.: achim.raschka@nova-institut.de

co2-chemistry.eu





## International Conference on Bio-based Materials 5-6 April 2016, Maternushaus, Cologne, Germany





nova-Institut GmbH

nova-Institut GmbH

Dominik Vogt

nova

Industriestr, 300

Maternushaus

Germany

Kardinal-Frings-Str. 1-3 50668 Köln / Cologne

Tel.: +49 221 / 16 31 - 0

Chemiepark Knapsack

50354 Huerth / Germany Phone: +49(0)2233-48-1449

dominik.vogt@nova-institut.de

#### 9th International Conference on Bio-based Materials

5 - 6 April 2016, Maternushaus, Cologne, Germany

Special Topics: ++ Lignin ++ Polyhydroxyalkanoates (PHA) ++ Innovation Award "Bio-based Material of the Year 2016"

NEW Press release: Looking for the "Bio-based Material of the Year 2016" ++ over 60 participants registered ++

Highlights of the worldwide Bioeconomy: Policy and Markets – Biobased Building Blocks and Polymers – Biorefineries and Industrial Biotechnology

This conference aims to provide international major players from the bio-based building blocks, polymers and industrial biotechnology industries with an opportunity to present and discuss their latest developments and strategies. Representatives of political bodies and associations will also have their say alongside leading companies. The 9th International Conference on Bio-based Materials builds on successful previous conferences. 250 participants and 30 exhibitors mainly from industry are expected!



#### Free booths!

Exhibition booths are free for registered participants! Please contact Dominik Vogt, dominik.vogt@nova-institut.de

#### ue & Accomposition Innovation Award "Bio-based Material of the Year 2016"

For the ninth year running, the Innovation Award "Bio-based Material of the Year" will be granted to the young, innovative bio-based chemicals and materials industry for finding suitable applications and markets for bio-based products. The focus of the award is on new developments within these areas, which had been launched in 2015 or will be launched in 2016.

#### Don't miss this opportunity!

Take part in the conference and benefit from a 30% discount on the registration fee of the Bio-based Start-up Day (7 April 2016)!

#### bio-based.eu/conference







## Thank you for your attention!



Dipl.-Phys. Michael Carus
Founder & Managing Director
+49 (0) 2233 48 14 - 40
michael.carus@nova-institut.de

